

Geospace Environment Modeling System for Integrated Studies

Subauroral plasma flows: Intercomparison between Hokkaido SuperDARN radar and simulation

> 海老原祐輔(名古屋大高等研究院) 西谷望·菊池崇·小川忠彦(名古屋大STE研) 細川敬祐(電通大) Mei-Ching Fok (NASA GSFC)

Peak of plasma pressure takes places at L=2-4.

M-I couping in subauroral region

- Divergence of the magnetospheric current is converted to FACs flowing into/away from the ionosphere.
- To conduct away from the space charge deposited by FACs, Pedersen currents must flow in the ionosphere, resulting in the additional electric field in the ionosphere.

Subauroral plasma flows

Fast westward flow on nightside

- Polarization Jet (PJ) [Galperin et al., 1973]
- Subauroral Ion Drift (SAID) [Spiro et al., 1979]
- Subauroral Electric Fields (SAEF) [Karlsson et al., 1998]
- Subauroral Polarization Stream (SAPS) [Foster and Vo, 2002]
 - King Salmon radar [Kustov et al., 2006]
 - Wallops radar [Oksavik et al., 2006]
 - Hokkaido radar [Kataoka et al., 2007]
- Auroral Westward Flow Channel (AWFC) [Parkinson et al., 2003]
- Shielding
- Overshielding

Subauroral Polarization Stream

Millstone Hill IS radar (54 MLAT)

Haystack Observatory/MIT

Millstone Hill IS radar (54 MLAT)

Haystack Observatory/MIT

GEMSIS Storm on 14-15 December 2006

SuperDARN Hokkaido radar

GEMSS

Simulation result

Simulation result

DEC 15,2006(349) 10:07:00 UT

Line-of-sight velocity

Beam 7

Conclusion

- SuerDARN Hokkaido radar observed short-lived SAPS-like flows in the premidnight sector during the magnetic storm of December 2006.
- Results of the ring current simulation taking into account the M-I coupling agree well with the observation.
 - The boundary condition for ring current particles is determined using data from 4 LANL satellites at 6.6 Re.
- The short-lived SAPS-like flows are most likely attributed to short- and meso-scale structure of the ring current.
 - Meso-scale structure of the ring current can be "monitored" by mid-latitude SuperDARN radars.