2011. 1. 31

名古屋大学

中緯度短波レーダ研究会

対流パターンと沿磁力線電流の相関構造

田中高史

サブストーム(全ての磁気圏)モデルに必要な4条件

電流系がカバランスを満たすこと

$$(\mathbf{J} \times \mathbf{B}) = \left(\rho \frac{d\mathbf{V}}{dt} + \nabla P\right)$$
 J_{||}にシア一流が付随すること
 $\frac{\mathbf{v}}{C_A} = \pm \frac{\mathbf{b}}{B_0}$
 エネルギー供給→ダイナモが形成されること
 $\mathbf{J} \cdot \mathbf{E} < \mathbf{0}$

• 電離圏closureが成立すること
$$abla ullet \nabla ullet \sum
abla arphi = J_{\parallel}$$

$$\mathbf{v}, \mathbf{E}, \varphi \rightarrow \mathbf{同}$$
一物理量

Convection pattern and FAC (IMF By dependence)

Heppner-Maynard convection pattern

Convection pattern and FAC

Ionospheric closure with uniform Σ H: high potential, L: low potential

Convection pattern and FAC

Ionospheric closure with non–uniform Σ H: high potential, L: low potential

18 MLT

Substorm currents system (color FAC)

Substorm current system and convection

Substorm onset location (Super DARN)

Onset arc problem (upper poleward)

(Rae et al., 2009)

N-S arc and substorm onset

(Xing et al., 2010)

Region 2 current driven model of the substorm

Developments of precursory flow and pressure

(Color:Vx at y=z=0, Contour:P at y=z=0 interval 240 pPa)

Earthward propagating dipolarization front

(Runov et al., 2009)

Convection pattern and substorm FAC

$\mathsf{Onset} \to \mathsf{SAPS} \to \mathsf{CEJ}$

H: high potential, L: low potential

Force balance(34)

onset t=52 min

(31/3)t=32.4 min P -gradP -J*B Vx

onset t=52 min

(31/4)t= 33.5 min P -gradP -J*B Vx

onset t=52 min

(31/5)t=34.7 min P -gradP -J*B Vx

onset t=52 min

(31/6)t=35.8 min P -gradP -J*B Vx

onset t=52 min

(31/7)t=37.0 min P -gradP -J*B Vx

onset t=52 min

(31/ 8) t= 38.1 min P -gradP -J*B Vx

onset t=52 min

(31/9) t= 39.3 min P -gradP -J*B Vx

onset t=52 min

(31/10) t= 40.4 min P -gradP -J*B Vx

onset t=52 min

(31/11) t= 41.5 min P -gradP -J*B Vx

onset t=52 min

(31/12) t= 42.7 min P -gradP -J*B Vx

onset t=52 min

(31/13) t= 43.8 min P -gradP -J*B Vx

onset t=52 min

(31/14) t= 44.9 min P -gradP -J*B Vx

onset t=52 min

(31/15) t= 46.1 min P -gradP -J*B Vx

onset t=52 min

(31/16) t= 47.2 min P -gradP -J*B Vx

onset t=52 min

(31/17) t= 48.3 min P -gradP -J*B Vx

onset t=52 min

(31/18) t= 49.4 min P -gradP -J*B Vx

onset t=52 min

onset t=52 min

Force balance end(34)

Jy(10)

Jy end(10)

end

Cowling channel

div (J Hall) + div (J Pedersen) = J_{\parallel}

left right contour

