DYNAMICS OF THE EQUATORWARD BOUNDARY OF THE ION AURORAL OVAL: RADAR OBSERVATIONS

P. T. Jayachandran STEL, Nagoya University &

Physics Department University of New Brunswick Fredericton, NB, Canada

N. Sato and A. S. Yukimatu NIPR, Tokyo, Japan

OUTLINE

- Introduction and background
- Significance of the boundary
- Techniques to determine the boundary
- New radar technique
- Dynamics of the boundary
 - + Substorm onset
 - + Response of the boundary to N-S transition of IMF
 - + Convection

INTRODUCTION AND BACKGROUND

Auroral oval comprises of precipitating electrons and ions

Polar UVI

In the UV image ion part is missing

DMSP Particle Spectrogram

PROTON AURORA/DIFFUSE AURORA

Image Satellite

Proton Aurora Electron aurora Proton+electron aurora In the dusk-midnight sector, on average, ion precipitation is equatorward of electron precipitation

From Mende et al., 2003

INTRODUCTION AND BACKGROUND

 Equatorward boundary of the high-energy ion precipitation represents the inner boundary of the ion plasma sheet – Ion Isotropy boundary – transition from pitch angle scattering to bounce

trapping

Location of the boundary indicate the state of the inner magnetosphere

Stretched tail – Boundary will be at lower latitude
Relaxed tail – Boundary will at higher latitude

TECHNIQUES TO MONITOR THE BOUNDARY

In-Situ particle measurements

- + DMSP class satellites
- + Problem: No temporal and spatial resolution
- Ground based optical measurements Proton aurora (Hβ)
 - + No Spatial resolution
- Satellite based UV imaging
 - + Most of the time sensitive to electron precipitation
 - + Modern imagers are capable nothing in orbit now

NEW TECHNIQUE – GROUND BASED RADAR

SuperDARN radars have wide coverage

Continuous and wide area monitoring capability (whenever irregularities are present)

A complimentary tool to monitor the dynamics of the proton auroral boundary (if it can monitor)

Old SuperDARN map!!

DISCOVERY OF E REGION BACKSCATTER ASSOCIATED WITH ION PRECIPITATION

Jayachandran et al. 2000

Validation with particle measurements

Comparison of radar boundary with DMSP particle boundary

Jayachandran et al., 2002a

Association of radar backscatter with

proton aurora

Jayachandran et al., 2002b

Comparison of radar and proton aurora boundary

Jayachandran et al., 2002b

An example of the coverage

Jayachandran et al., 2005

VARIABILITY OF THE BOUNDARY

Substorms

Transitions of the IMF

Convection

Jayachandran et al., 2006

GLOBAL AND LOCAL EXPANSION DURING SUBSTORMS

Jayachandran et al., 2005

In a nutshell

- Local Expansion (21 Cases)
- Global Expansion (47 Cases)
- ---- Kp=3 Boundary location (Donovan et al., 2003)

Global oscillation of the boundary

Jayachandran et al., 2007

Boundary and IMF transition

Tracking propagation

CONCLUSIONS

- SuperDARN Radars can detect the ionospheric projection of the inner boundary of the ion plasma sheet in the dusk-midnight sector
- For some substorms there is a localised equatorward expansion of the auroral oval prior to the onset
- Localised equatorward expansion occurs near the onset location
- Equatorward boundary of the ion auroral oval moves equatorward in response to the N-S transition of the IMF with a delay
- Expansion seems to propagate from dayside to nightside supporting Lockwood and Cowley Mechanism