Mid-latitude HF radar workshop October 24 (Mon), 2011 10:50-11:10

## The Hokkaido HF radar observations of Pi2 pulsations in the near range echoes.

M. Teramoto<sup>[1]</sup>, N.Nishitani<sup>[1]</sup>, V. A. Pilipenko<sup>[2]</sup>, K. Shiokawa<sup>[1]</sup>, K. T. Murata<sup>[3]</sup>, and T. Nagatsuma<sup>[3]</sup>

[1] Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan
[2] Space Research Institute, Moscow, Russia
[3] National Institute of Information and Communications Technology, Tokyo, Japan

### Introduction

#### Pi2 pulsations (period: 40-150 s)

At substrom onsets, Pi2 pulsations were observed on the nightside over wide range of latitudes.

The mid- and low-latitude Pi2 pulsations

→They may occur through the fast mode waves propagating from the magnetosphere and subsequently being trapped between the plasmasphere and the ionosphere. BPF applied

→The electric field characteristics of ionospheric Pi2 pulsations have not been investigated over the entire range of latitudes.



<sup>(</sup>Ikeda et al.,2010)

Mid- and low-latitude Pi2 pulsations in the ionospheric electric field

The radars detect electric field variations in the F-layer ionosphere.

···· Grant and Cole [1992], Marshall and Menk [1999], Ikeda et al., [2010]

We compared magnetic Pi2 pulsations on the mid-latitude ground stations to Doppler velocities observed by the Hokkaido HF radar.

### The Hokkaido HF radar

- Location: 34.9° GMLAT, 211.6° GMLON
- In this study, we use Doppler velocity data of beam 4 sampled every 8 seconds (themisscan mode).
- The Hokkaido radar can observe Doppler velocities over a wide latitudinal range from 38° GMLAT to 80° GMLAT.

#### Ground magnetometer stations

- Moshiri (MSR): 37.6° GMLAT, 213.2° GMLON.
- Kakioka (KAK): 27.4° GMLAT, 209.2° GMLON.

Beam04 Beam00 60°N Geocentric latitude 50°N MSR 40°N Beam16 Beam15 30°N KAK 140°E 160 °E 180°E 200°E Geocentric longitue

- Magadan (STC): 52.1° GMLAT, 213.8° GMLON.
- St. Paratunka (PTK): 45.6° GMLAT, 221.1° GMLON

The fluxgate magnetometers sample data every 1 second.

### The Ionospheric Scatter and Ground/sea Scatter



We can estimate the electric field of the Pi2 pulsations in the ionosphere from the Doppler velocity observed by the HF radar.

### Substorm Signature



#### Pi2 Pulsations Simultaneously Detected in the Ground/sea and Ionospheric Echoes



## The Locations of Observations



# The electric field estimated from the Doppler velocity



We used IGRF model for the geomagnetic field data.

Bh





- The power of velocities and H component from MSR and PTK had peak at 10 mHz.
- The H-E and E-E coherences were high (> 0.9) at 10 mHz.
- The electric field was in quadrature to H component at 10 mHz.
- Pi2 pulsation in the E region was in phase with that in the F region.

## **Theoretical Estimation 1**

We theoretically estimated the ratio E/B for Alfvén and fast mode in a homogeneous medium according to the following equation [Pilipenko et al., 2008].



Observation shows that the ratio is  $\sim 6 \times 10^4$  [m/s] at peak frequency (10 mHz). It is much less than that for Alfvén mode but consistent with that for fast mode.

 $E_x$ : the wave electric field in the North-South component on the ground.

 $B^{(g)}_{x}$ : the wave magnetic field in the North-South component on the ground

- $V_{H} = (\mu_{0} \Sigma_{H})^{-1}$ : Ionospheric velositiy
- I: Inclination of the magnetic field.
- $E_v(z)$ : the wave electric field in the East-West component on the ground.
- h: The altitude of a thin conductive layer.
- z : Altitude from a conductive layer.

## Theoretical Estimation: the Parameter p

For the highly-conductive ground, the ratio of the North-South magnetic field on the ground  $(B_x^{(g)})$  to the compressional fast mode wave from the magnetosphere  $(B_x)$  is

$$\frac{B_x}{B_x^{(g)}} = 1 - ip, \qquad p = \frac{\omega h}{V_c}$$

 $V_c = (\mu_0 \sum_c)^{-1}$ : Ionospheric velocity determined by the Cowling ionospheric conductance (  $\sum_{p} + \sum_{H^2/\sum_p}$ ).  $\omega$ : angular velocity of the wave

|p|~1: the ionosphere partially screens the incident wave from the magnetic field.
|p|<<1: the incident fast mode wave from the magnetosphere is transmitted through the ionosphere.</li>

$$\sum_{\substack{\Sigma_{P} \sim 0.3 \text{ s} \\ \bullet \Sigma_{H} \sim 0.2 \text{ s} \\ \bullet \omega \sim 0.06 \text{ s}^{-1}}} \longrightarrow p \sim 3 \times 10^{-3}$$

The fast mode wave propagating from magnetosphere may be completely transmitted through the ionosphere and reflect at the earth surface.

## Statistical analysis: Near-range Events Selection

Events were identified to investigate the E/B ratio, E-B cross phase, and p parameter property of Pi2 pulsations in the near-range echoes. The time interval from November 2007 to December 2010 was considered. The following procedures were used.

First step: The substorm onsets were identified from the AL index.

The standard deviation of the AL index for the 20-min time interval before t is less than 50nT.
The AL index decreased by the larger than 100 nT during 20 minutes after t.

Second step: Pi2 pulsations are identified on MSR.

MSR was located on the night side (2000-0400MLT).
The amplitude of Pi2 pulsations is greater than 1 nT.

Third step : the events are identified in the Doppler velocities.

- ① The frequency of MSR Pi2 pulsations is same as that of the Doppler velocities.
- (2) The coherence between H and V was greater than 0.8.
- ③ A maximum range of 10 were used.

15 events were identified from the near-range echoes.



## The Latitudinal Distribution of E/B



# The Latitudinal Distribution of the E-B Cross Phase and the Parameter p



The E-B cross phases were greater than 90° and less than 180°.

In all cases, p parameter is much less than 1

# Summary and Conclusion

On July 11, 2010, the Hokkaido radar observed the ionospheric echo from the E region at 39.5° -39.9° geomagnetic latitudes and the ground/sea echo from the F region at 46.3° -47.0° Geomagnetic latitudes.

- The periods of the electric field variation estimated from Doppler velocity were similar to those of mid-latitude Pi2 pulsations on the ground.
- The electric field estimated from Doppler velocity was in quadrate to Pi2 pulsations in the H component on the ground.
- The E/B ratio at 10 mHz was ~6 × 10<sup>4</sup> [m/s], which was much less than E/B for Alfvén mode and consistent with E/B for fast mode according to theoretical estimate (*Pilipenko et al.*, 2008).
- The p parameter was ~3 × 10<sup>-3</sup>, which indicates that the incident fast mode wave propagating from magnetosphere reflects not from ionosphere but from the ground.

Statistical property of Pi2 in the near-range echoes.

- The E/B ratio was much less than that for incident Alfvén wave.
- The electric field variations estimated from near-range echoes had phase difference to the ground H component.
- The p parameter is much less than 1.