SI-associated transient ionospheric flow observed by SuperDARN

T. Hori (ERG Science Center, STEL), A. Shinbori (RISH), S. Fujita (Meteorological College), N. Nishitani (STEL)
Introduction: Sudden impulse (SI+, SI-)

Ground B. observation of SI+

Figure 2a. Sudden commencement (SC) observed at Kakioka (geomagnetic latitude = 26.6°N), Japan on March 24, 1991. [Araki+1997]

- Rapid compression/expansion of the magnetosphere → sudden rise/drop of the horizontal geomagnetic field on ground

Global MHD simulation of SI-

Negative SI (SI-) caused by sudden expansion of the magnetosphere [Fujita+2012]
Introduction:
Ionospheric current vortices from geomagnetic field observation

\[dB_{\text{ground}} = D_L + D_P + D_{MS} \]

[Araki1994, modified]

\(D_P \propto \sum H (B \times E) \)

\(D_L \): due to magnetopause current,
\(D_P \): due to ionospheric current
\(D_{MS} \): due to magnetospheric currents

for a negative SI event

[Araki and Nagano, 1989]
Previous works by SD

- Covered only limited portions of vortices on dayside or dusk.
- Examined the vortex polarity on the basis of event study.
- Gross average of flows around SIs.

- No study so far on the global structure of transient flow associated with SI wave forms.
All LOS-V data during positive SIs

All N. hemis. SuperDARN Doppler velocity data for 192 SI+ and 179 SI- events during 2007-early 2014 were statistically analyzed to deduce a transient flow pattern.

Nothing but a mess if just plotting all velocity data...
2-D velocity statistically derived by the beam-swinging technique

- Line-of-sight Doppler velocities obtained in each lat-lon pixel are fitted to give a 2-D velocity vector.

[Diagram showing beam-swinging technique and its application for each bin to derive a 2D velocity vector.

The beam-swinging technique is applied for each bin to derive a 2D velocity vector (e.g., Makarevich+2007)]
fitted flow map for all SI+ events

Before SI

$\langle V\rangle_{\text{before}}$

At SI peak

$\langle V\rangle_{\text{SI peak}}$

Twin cell convection is sustained as background flow during SIs.

White pins show each fitted 2D velocity vectors for each pixel. Pixel colors denote flow speeds with polarity of local time flow component.
Difference of flow vector between “before” and “at SI peak” (all SI+ events)

\[\langle V_{SI \, peak} - V_{before} \rangle \]

White pixel: no or too few data
Findings so far based on SI statistics

- Polarity of flow vortices is basically consistent with the MI model [Araki1994, Araki&Nagano1988].

- Slower evolution of flow vortices for SI- than SI+.
- MI vortices emerge always at lower latitudes than PI ones.

- The higher latitude flows of vortices expand toward lower latitudes for SI- than SI+.

- IMF-By-induced flow asymmetry between SI+ and SI- [SGEPSS2014].

- Dependence of flow vortex magnitude on $\Delta P_{\text{solarwind}}$
Higher latitude flows expands more toward lower latitudes during SI-.
Dawn-dusk asymmetry and SI+—SI- asymmetry

- Transient flows expands more toward lower latitudes during SI-.

- Answer so far:
 - The magnetosphere is always more compressed than usual (supported by the solar wind data)
 - “Compressed magnetosphere” stores a free energy to expand outward.
Still the sunward flow for SI- expands toward low latitudes … There should be other reason(s) for this asymmetry between SI+ and SI-.
Summary and conclusion

SI-induced transient ionospheric flows observed by SuperDARN were statistically analyzed.

- The polarity of flow vortices is basically consistent with that inferred from geomagnetic observations [Araki, 1994].

- However, SI+ and SI- is not a mirror image of each other somehow in terms of convection/convection E.