

Azimuthally-propagating ionospheric flow fluctuations during storms

 T. Hori¹, N. Nishitani¹, S. G. Shepherd², J. M. Ruohoniemi³, M. Connors⁴, M. Teramoto¹, K. Keika⁵, S. Kasahara⁵, S. Yokota⁶, A. Matuoka⁷, Y. Miyoshi¹, I. Shinohara⁷, J. W. Manweiler⁸, H. Madanian⁸, C. A. Kletzing⁹
1. ISEE, Nagoya Univ., 2. Dartmouth College, 3, Virginia Tech., 4. Asabasca Univ., 5. The Univ. of Tokyo, 6. Osaka Univ., 7. JAXA/ISAS, 8. NJIT, 9, Univ. of Iowa

Contents

Introduction

- substorm-associated ionospheric flow fluctuations
- Motivation & Objectives
- Analysis
 - Event 1 (Sep. 7–8, 2017 storm)
 - Event 2 (May 28, 2017 storm) if time permits ...
- Discussion
- Summary & Conclusions

The nearly-conjugate observation by Arase has given <u>first-ever evidence</u> that eastwardpropagating mHz fluctuations seen by SuperDARN radars are associated with drifting electrons.

 Comparison with magnetospheric particle observations is key to addressing this issue.

5

Further questions:

- How ULF-like flow fluctuations look like during other storm events?
- Are they accompanied by injected drifting populations?

Event 1 (Sep., 7–8, 2017)

Hori, T., et al., i'spheric flow fluctuations, SD workshop @ISEE Oct. 16, 2018

9

Sep. 7 22:00 - Sep. 8 03:00

2-D view of Doppler velocity distribution for Sep. 6

Ewograms (east-west cuts) of LOSVs of the FHW is radar

... showing westward phase propagation of ~2-3 km/s

Arase and RBSP-A during 23–01 UT

- RBSP-A: inbound at MLT ~ 16–18h
- Arase: apogee at MLT ~ 20–21h, L ~ 10 (MLAT > 30°)

RBSP-A's footprint was right at the ULF region

Westward-propagating flow fluctuations and drifting energetic ions

Event 2 (May 28, 2017)

if time permits ...

~01:40 UT on May 28, 2017

typical period of the fluctuations ~ 10 min

Summary & Conclusions

- How ionospheric flow fluctuations look like during other storm events?
 - Similar, azimuthally-propagating fluctuations are also found for 4 magnetic storms so far. M-number is ~10–20, and the propagation speed is consistent with several tens of keV ions.
- Are they accompanied by injected populations?
 - > Yes they are, but without any bump-on-tail distribution.

Implications:

- The propagating flow fluctuations can be seen at mid-latitudes only during storm times?
- The fluctuations are associated with drifting particle populations.
 - ► Driven wave: Bump-on-tail distribution? (∂f / ∂W)
 - Driven wave: Radial gradient ($\partial f / \partial L$)
 - Non-wave: Pressure bumps of ring current (ions)