SuperDARN研究集会 OCT 16 (Tue), 2018 @Nagoya University

Drift-bounce resonance between Pc5 wave and ions: Arase and MMS study

<u>S. Oimatsu</u>¹, M. Nosé², M. Teramoto², K. Yamamoto¹, A. Matsuoka³, S. Kasahara⁴, S. Yokota⁵, K. Keika⁴, G. Le⁶, R. Nomura⁷, A. Fujimoto⁸, D. Sormakov⁹, O. Troshichev⁹, Y.-M. Tanaka¹⁰, M. Shinohara¹¹, I. Shinohara³, Y. Miyoshi², J. A. Slavin¹², R. E. Ergun¹³, and P.-A. Lindqvist¹⁴

¹Graduate School of Science, Kyoto University, ²Institute for Space-Earth Environmental Research, Nagoya University, ³Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, ⁴Graduate School of Science, The University of Tokyo, ⁵Graduate School of Science, Osaka University, ⁶Heliophysics Science Division, NASA Goddard Space Flight Center ⁷Environmental Test Technology Unit, Japan Aerospace Exploration Agency, ⁸International Center for Space Weather Science and Education, Kyusyu University, ⁹Arctic and Antarctic Research Institute, ¹⁰National Institute of Polar Research, ¹¹National Institute of technology, Kagoshima College, ¹²Department of Climate and Space Sciences and Engineering, University of Michigan, ¹³Department of Astrophysical and Planetary Sciences, University of Colorado, ¹⁴Royal Institute of Technology

Oimatsu, S., Nosé, M., Teramoto, M., Yamamoto, K., Matsuoka, A., Kasahara, S., et al. (2018). Drift-bounce resonance between Pc5 pulsations and ions at multiple energies in the nightside magnetosphere: Arase and MMS observations. *Geophysical Research Letters*, 45, 7277–7286. https://doi.org/10.1029/2018GL078961

ULF waves and drift-bounce resonance

Drift-bounce resonance of O+ ion

- Oxygen ions are diffused by the drift-bounce resonance with convection electric field (simulation).
- Drift-bounce resonance of O⁺ ion contributes to the acceleration or deceleration of O⁺ ions [e.g., Li et al., 1993; Yang et al., 2011].

 Mitani et al. (2018) proposed that the drift-bounce resonance contribute to the deeper penetration of > 200 keV O⁺ ions into the inner magnetosphere.

Data

Arase satellite • MGF

- 8-s magnetic field
- · MEP-i
 - 16-s data (NML mode)
 - H+, He++, He+, O+, O+2, O₂+
 - Energy range: 5.1 ~109.6 keV
- · MEP-e
 - 8-s data
 - Electron (e-)
 - Energy range: 7.0~87.5 keV

• MMS1 satellite

- FGM Magnetic field
- **EDP** Electric field

Ground stations (TIK, PBK...)

Magnetic field

Launch	Date	December 20, 2016
Orbit	Altitude	Perigee: ~460 km Apogee: ~6 Re
	Inclination	< ~31°
	Type of Orbit	Elliptical orbit
	Period	~8 hours
	Spin period	~8 sec

Case study : 27 March 2017

Solar wind conditions

Observation of ULF waves

- Arase, MMS1, and ground magnetometers observed Pc4 and Pc5 waves.
- The wave amplitude of the Pc5 is largest in the azimuthal direction.
- The Pc5 wave is observed on the ground.
- Wave period of the Pc5 wave is ~450 s.
- Ea leads Br in the southern hemisphere.
 - \rightarrow Fundamental mode.

Power spectrum

Ground magnetometer data

~Daw 100 100 PBK **KIAN** smoothed 50 50 mag kian PBK h ~Noon⁻¹⁰⁰ -50 KAKC smoothed 50 -100 kako kako TIK -50 50 -100 Ц Ч 100 C **FSIM** smoothed 50 mag fsim -50 -100 -50 100 -100 100 **BRN** 50 GIL 50 h h gill gill 0 5 -50 100 100 -100 x smoothed JAIN 50 100 nain nain DIK C 50 -50 d H H -100 0 100 NAQ mag h naq smoothed -50 50 0 -100 100 -50 AMD -100 50 100 E amdh ABK abk smoothed 50 C -50 -50 -100 -100 1800 1900 hhmm 1730 2017 Mar 27 hhmm 1800 1830 1900 1930 2017 Mar 27

Nightside

Dayside

Observational estimation of m-number

: Phase difference

: Longitudinal separation

We determine $\Delta\theta$ which provides the maximum crosscorrelation coefficient at 1830–1910 UT.

with the ground observation.

E-T diagram

2017/03/27/1820-1920UT

Residual fluxes

MEP-i/H⁺/1830-1910UT 100 0.6 109.6 keV H+ H+ 87.8 keV 0.3 70.3 keV 100.0 MEP-i H⁺ [keV] 56.3 keV 45.1 keV 0.0 36.2 keV 29.0 keV 23.3 keV 10 18.6 keV Dispersion 10.0 15.0 keV 12.0 keV 9.7 keV 100 7.8 keV 3 keV **O**+ 5. keV 1.0 MEP-i O⁺ [keV] 0. 10 Dispersion 0 2 6 4 100 Frequency (mHz) MEP-i/O⁺/1830-1910UT 0.3 e MEP-e e [keV] 0.0 109.6 keV 87.8 keV 70.3 keV No dispersion 100.0 -0.3 10 56.3 keV 45.1 keV -0.6 10⁰ 36.2 keV Power [1/Hz] 29.0 keV 100 23.2 keV **O+/H**+ 18.6 ke 10.0 5.0 ke\ MED MH MED M 1.0 10 A L 5.39 A MLT(hr) 1.54 M L 6.54 M MLT(hr) 2.37 hhmm 1820 2017 Mar 27 6.05 2.52 9.06 3.40 5.84 2.19 5.95 2.36 5.56 1.79 5.70 2.00 0.1 7.63 2 6 0 3.25 1900 2.88 2.65 3.08 Frequency [mHz] 1850

- Residual flux : $\Delta J=(J-J_1)/J_1$ (J₁: 10-min moving average)
- Large flux oscillations of H⁺ fluxes at > 50 keV, and that of O⁺ fluxes at > 50 keV and < 20 keV.

Power spectra

 O+/H+ flux ratio show the enhancements corresponding to the O+ flux oscillations.

Theoretical resonance energy in a dipole field

	Resonance mode	Theoryetical resonance energy	Observational energy of large flux oscillations	Consistency (Theory vs observation)
H+	N=0 Drift resonance ($\omega \sim m\omega_d$)	~70-200 keV	> 56 keV	\bigcirc
	N=2 Bounce resonance ($\omega \sim 2\omega_b$)	0.2-0.6 keV	Out of energy range of MEP-i	?
O +	N=0 Drift resonance ($\omega \sim m\omega_d$)	~70-200 keV	> 56 keV	\bigcirc
	N=2 Bounce resonance ($\omega \sim 2\omega_b$)	~3-9 keV	~5–18 keV	\bigcirc

Discussion on the flux oscillations

- Flux oscillations of H⁺ and O⁺ ions at > 50 keV are caused by drift resonance and those of O⁺ ions at < 20 keV are caused by bounce resonance.
- We simultaneously found the drift resonance and bounce resonance of O⁺ ions at multiple energies in the nightside inner magnetosphere.
- The enhancement of O⁺/H⁺ flux ratio at low-energy band (≤ 23.3 keV) is mainly caused by selective acceleration of O⁺ ions due to the bounce resonance for O⁺ ions (≤ 18.6 keV)
- Mitani et al. (2018) proposed that the drift-bounce resonance contribute to the deeper penetration of > 200 keV O⁺ ions into the inner magnetosphere.
- The solar wind may generate the Pc5 wave through K-H instability and it feeds energy to the O⁺ ions through the bounce resonance.

Energy transfer

Solar wind \rightarrow ULF waves \rightarrow Resonance \rightarrow O⁺ ions ?

Conjunction of SuperDARN data

Footprint is in Russia

https://ergsc.isee.nagoya-u.ac.jp/data/ergsc/cef/orbit/

Can I use any SuperDARN data?

Summary

- Fundamental Pc5 wave and a Pc4 wave were observed by Arase, MMS1, and ground stations (TIK and PBK) in the postmidnight region in the storm recovery phase on 27 March 2017.
- ◆ The Pc5 waves is considered to be excited by solar wind.
- m-number of the Pc5 wave is estimated by satellite observation and ground observation to be m=-10 to -15.
- The e⁻ flux oscillation is not caused by the drift-bounce resonance, while, large ion flux oscillations are attributed to the drift resonance for H⁺ and O⁺ ion (> 50 keV), and to the bounce resonance for O⁺ ion (< 20 keV).</p>
- ♦ O+/H+ flux ratio shows enhancements corresponding to the O+ ion flux oscillations, which suggest the selective acceleration of O+ ions.