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Introduction and Motivation

Internal Energy K-H

instability
Source for ULF Waves

- high-m waves |
m| ~ 100, m <0 | a2 imber
(westward)

- dusk side (spacecratft)

- drift-bounce resonance

Giant Pulsations (Pgs)

- dawn side (ground stations)
- large wave amplitudes
- moderate m number

Im| ~30—40, m<O0 : 13:00

Universal time

LELS ' :
2113 akahashi et al. (2011)



Introduction and Motivation

Remained Questions about Giant Pulsations

* excitation mechanism — )
* drift-bounce resonance (with ~0930 LT

GEQOS-2
~10keV protons) or drift resonance Proton
(with ~100 keV protons)?

- wave
* bump-on-tail structure?

excitation?
d %, L? d
—f = <—f> + Tzn (—f) > () (destabilization)
aw ow L qRea)Beq oL W

energy gradieht radial gradient Southwood &
f: phase space density, W: energy, u: magnetic moment, Kivelson,
w: wave frequency, m: m number (1969; 1981)

Phase Spake Density (s3km-)

102 103
Energy (keV)

drift resonance (fundamental) drift-bounce resonance (2nd harmonic)

- Takahashi et al. (1991, 2011, 2018)  Chisham and Orr (1991)
- Thompson and Kivelson (2001) - Ozeke and Mann (2001)
- Motoba et al. (2015) - Wright et al. (2001)
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Experiments and Data

Experiments

- We analyzed the data of the Arase satellite.
- We checked following three criteria to confirm the wave-
particle interaction:

(C1) Is the flux (also) oscillating?

(C2) Is the resonance condition satisfied?

wy: drift frequency,

wW— Mg = NCl)b w,: bounce frequency, Data

"\ ground stations_ N: integer L
_ » - MGF (magnetic field)
(CB) IS df/dW pOSItlve 8-sec values
(destabilization)? - MEP-i (energetic ions)
8-sec values of protons
df of mL2  (df energy range: 5.1 —109.6 keV
W (W) + R200B,, (a—L> - ground magnetometers (EMMA)
WL ww 1-sec values

Arase Arase
¥ ¥

energy gradient radial gradient
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Observation: Orbit of the Arase Satellite

AL Index
(nT)

4= This Study"|
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MLT ~ 03 hr

ULF wave
detection
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00 04 08 12 16 20 24
Xsu (Re) UT (hr)

Geomagnetic
Condition

* substorms on
April 14
* recovery phase

Location of the

Spacecraft

- detection of ULF

wave during
0040 —-0140 UT

- dawn side

* magnetic equator




Observation: Overview of MGF and MEP-i Data

Arase 15 April 2017
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Observation: Distribution of Phase Space Density

0055-0115 UT (L=6.1)
T ! , , ! I ! N T T T T LI

1096 RGV' - The energy gradient of proton phase space

density was obtained from the energy
spectrum.

258 el - The radial gradient of proton phase space
HET A R R density was estimated by using the ion

10 sounding technique. —(C3)
Energy (keV)

Arase MEPi / ion sounding gulding center

(anti-earthward)

7 R R L (RETAEERE Ty Ly v +

5= guiding center
(earthward)

fiys (5°KmE)

anti-earthward
earthward

a steep .earthward
gradient

\mei Rc: a gyro-radius of protons

the wave excitation |
PR RS S ST B ST U ST AT S S S T AR A U AR A A

oo Af = (anti-earthward)
- (earthward

earthward

ABu(MFA)

g ——————————— , ;o |

of Af
L 5.9 6.0 6.1 6.1 6.1 6.0 6.0 5.9 5.7 5.6 (for 0055-0115 UT)

— N —
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Observation: Geomagnetic field at Ground Stations

Foot prints of Arase
and Stations of EMMA

(@)

MUO IVA  KEV

AACGM Latitude (°)
RAN  SOD
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h
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y 63,
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hmm

ABy component

observed at the stations of EMMA

636 635 63.7 638 638

0040 0050 0100 0110

2017 Apr 15

hhmm 0055
2017 Apr 15

— HSOD

— longpp|

m: m number,

0: phase of the waves
observed at MUO or SOD,
lon: AACGM longitude at
MUO or SOD
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To confirm the
resonance condition
(C2), we estimated
the m number.

We used
longitudinally
separated stations
(SOD and MUQ) of
EMMA.

The phase of SOD
leads that of MUO by
-108° to -113°.

= M =-49 to -52

(westward propagation)



Discussion: Instability Analysis

Check on the Resonance e e
Condition (C2)

- The resonance particles are

assumed to be protons at W = S _____\
109.6 keV and a = 90°. > TN
= M = -49 (N = O, drift resonance) 5 N=-1
close to the estimation from observation! resonance
N=0
Stabilization or dift resonance

10t

Destabilization (C3) 4007300200100 0 109 200 300 400

. df/dW = 9f/0W + m/(QRe2wBeq) X Of/0L a steep earthward gradient
=-9.70 + (-1.73 X 102) X (-7.48 X 10?) = 3.22 [s3km¢/keV] > O

wave excitation

- The steep earthward gradient excites the waves.
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Discussion: Cause of the Steep Earthward Gradient

What causes the steep earthward gradient?
- trailing edge of injected particles
d

J . .
INCTE=onins

V4 Hamlin et al., 1961

O

Tailing Edge
of Injected
Protons

Morning
Sector

(a) Injection may be interrupted and the trailing edge of injected protons is formed.
(b) The trailing edge at larger L propagates faster than that at smaller L.

(c-d) The outside protons have dropped out and a steep earthward gradient is
created in the morning sector.
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Discussion: Group Velocity of the Waves

Is the energy source moving?

15th April 2017 EMMA/Group Velocity

i wmmmw

b~ 1
A
) m.m J.“

The wave packet
observed at IVA led
that observed at MUO
by ~90 sec, which
corresponds to an
angular frequency of
-6.6 X 10 [rad/s].

The drift angular
velocity of 110 keV

protons is
-1.6 X103 [rad/s]
(Comparable to the

r V itv? hh 0055
group velocity?) zu?}"lpns
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Discussion: Potential of SuperDARN Data |

What we expect if the energy source Is moving
Hanasaml el i i 15 Oct 1998 ' 15th Aprll'-
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Yeoman et al. (2012)

From the SuperDARN observation, Yeoman &

et al. (2012) suggested that the curved : CO”JU”CUO”
phase fronts of the line-of-sight velocity .-'DykaIbaer ICeIand
result from a moving wave energy source. ._Hankasalml Flnland
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 On April 15, 2017, the Arase satellite detected a
compressional magnetic field oscillation in the Pc4 band that
IS related to a giant pulsation observed on the ground.

 We found evidence that the waves were in drift resonance
with ~110 keV protons.

 In previous studies, a bump-on-tail distribution was
considered as an energy source of Pgs; however, the Pc4
waves examined in this study were excited by a steep
earthward gradient of proton phase space density. This is a
new founding because the previous studies focused on only a
bump-on-tail structure.

» \We suggest that the steep earthward gradient are related to
substorm recovery phase.
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Backup Slide

« lonospheric Screening Effect

—

m‘ dayside Assuming [m| ~ 50, k't = A/2m =
\ sunspot minimum 2T|' X Re / m / 2Tr = Re / m —~ 130
nightside
sunspot minimum

Arase is operating during the declining
phase or solar minimum.
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Hughes et
al. (1976)
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