

Current Status and Future Plan of Arase(ERG) Project

Y. Miyoshi, I. Shinohara Geospace Exploration Mission ERG project Team

1. ERG Mission Objectives

In the inner magnetosphere, different plasma/particle populations with energies ranging over 6 orders (eV \sim MeV) coexist and interact with each other. Dynamical coupling of different energy/regions through wave-particle interactions plays various roles in evolution of the radiation belts as well as geospace storm.

1. ERG Mission Objectives

To Understand acceleration, transport, and loss of outer belt electrons, dynamics of inner magnetosphere and geospace storms in the context of cross-energy/cross-regional couplings

Key points of the ERG project:

- Comprehensive observations to understand the whole process from the generation of waves to acceleration and losses by observations on wide energy plasma/particles and wide frequency field and waves in the inner magnetosphere.
- Conjugate observations with ground-based network and other geospace satellites.

2. Status of Prime Mission: 2-2 Observation Status

•The prime mission started on March 24, 2017

Miyoshi+[2018a, EPS]

[Concepts of the initial full operation]

- at heart of the outer radiation belt
- at the region for chorus-wave particle interaction region
- for magnetic active periods (continuous substorm actvities)

Considering these points, Arase started their full operation

- near the magnetic equator at $L=4\sim6$.
- at the dawn side (MLT~06:00)
- around spring equinox (considering the Russell-McPherron effects)

2. Status of Prime Mission

Normal observations

All science instruments have operated without troubles and provided good data for radiation belts and geospace.

Summary plots for all instruments

Summary plots for plasma waves magnetosonic mode waves (PWE/EFD) magnetopause plasmaspheric hiss (PWE/OFA) 1000 fee 10° 3 1000 Fract 10 plasmapause 2.5 23.0 -3.8 1900 1.8 2.0 -30.2 1930 5.3 15.5 28.3 0230 5.7 15.7 29.2 0240 6.0 16.0 29.8 0250 MLT MLAT hhmm 2017 Oct 01 EMIC waves (PWE/EFD) whistler mode chorus (PWE/WFC) 100 RG PWE/WFC E_U frequency [Hz] 10-2 0.5fce 2000 ULF waves (MGF) 2.5 0.0 4.4 1240 1.7 1.7 -6.2 1300 4.8 23.7 3.3 47 4.8 23.7 3.3 44 4.8 23.7 3.3 46 B. InTI MLT 23. MLAT 3. Seconds 40 2017 May 18 0136:

RG MGI

MLT MLAT hhmm 2017 May 29 6.0 23.6 16.0 0330 6.5 23.9 19.1

Miyoshi+[2018a,EPS]

6.9 0.2 21.7 0430 73 0,4 24.0

Burst mode observations

PWE/WFC (chorus, EMIC) and S-WPIA have successfully been operated as burst-mode.

Operation strategy:

1) Scheduled operation:

the period for chorus/EMIC source region is scheduled based on the predictive orbit is scheduled.

2) Trigger mode operation: the automatic trigger mode for chorus waves is also operated.

Downlink strategy:

•The burst data (PWE/WFC, S-WPIA) recorded in the onboard storage is selected to download to the ground by looking at PWE/OFA data.

Total amount of received data:

March 21, 2017 – July 11, 2018

- chorus burst: 156.0 Gbytes (7953min)
- EMIC burst: 23.0 Gbyte (74806min)
- SWPIA burst: 32.1 Gbyte (1634min)

Campaign Observations

- Four campaign observations between ERG and Ground-based network observations
 - 1: 2017/03/24 2017/04/30 : dawn: chorus-wave particle interactions
 - 2: 2017/06/12 2017/07/04 :
 - : midnight: substorm

(conjunctions with Syowa station)

- 3: 2017/09/09 2017/10/06 :
- 4: 2017/12/08 2018/01/09 :
- 5: 2018/09/03 2018/09/17 :
- dusk: EMIC-wave particle interactions noon: EMIC/ULF-waves
 - : midnight- post-midnight

- Conjunctions with

- Optical imager network
 - (Syowa, Iceland, Russia, Scandinavia, Alaska, THEMIS/GBO)
- IS radars (EISCAT, PFISR, PANSY, Millstone Hill, Kharkiv)
- SuperDARN
- Magnetometer
- Riometer
- Loop antenna

- Operations of Arase

- wave burst mode (PWE/WFC or S-WPIA for chorus) (PWE/EFD and MGF w/ 256 Hz for EMIC)
- LEP-e fine channel observations
- particle observations with 8 sec time resolution

Conjugate observations w/ ground-based network

- More than 1000 conjugate observations with ground network observations are realized.
- Burst mode (PWE/WFC or S-WPIA) were operated.

•Conjugate observations w/ Van Allen Probes

- Simultaneous burst mode observations have been operated with <u>Van Allen Probes</u> (~250 conjugate observations as of Oct 2018)
- •Conjugate observations w/ THEMIS, MMS, etc
 - Collaborations w/ THEMIS, MMS etc are also going.

Details are summarized in ERG-Wiki page https://ergsc.isee.nagoya-u.ac.jp/mw/index.php/ErgSat/

Collaborative Observations (cont.)

Collaborations with SuperDARN, PFISR (PokerFlat Incoherent Scatter Radar), Millstone Hill Radar, Kharkiv Radar, PANSY

- Simultaneous observations (scheduled operations by Arase)
- Ion instruments are operated with the NML mode when Arase has a conjunction with SuperDARN.

The observation plans are shared, and simultaneous observations (including ERG burst mode observations) have been operated. If you have any suggestions, please contact us.

ERG-SuperDARN conjunction summary plot

ERG-SuperDARN conjunction summary $\operatorname{plot}_{\mathscr{Q}}$

Campaign observation for 2018-2019 fall to winter season

Scheduled operations for the Arase-Van Allen Probes-SuperDARN conjunctions aiming at satellite-ground multipoint obs DD1:HH1 DD2:HH2 schedule category [radars by which the special obs. is made] { Name of scan program }

e.g., 22 UT, May 4 to 4 UT, May 5 --> **04:22 05:04**

September, 2018

09/01 04:00-09/01 12:00 Special Time (ARASE) (see Note A) [HKW HOK ADW ADE KSR KOD CVW CVE FHW FHE BKS WAL PGR normalscan}

09/03 02:00-09/03 12:00 Special Time (ARASE) (see Note A) [HKW HOK ADW ADE KSR KOD CVW CVE FHW FHE BKS WAL PGR normalscan}

09/08 06:00-09/09 14:00 Special Time (ARASE) (see Note A) [HKW HOK ADW ADE KSR KOD CVW CVE FHW FHE BKS WAL PGR normalscan}

09/12 04:00-09:12 14:00 Special Time (ARASE) (see Note A) [HKW HOK ADW ADE KSR KOD CVW CVE FHW FHE BKS WAL PGR normalscan}

09/14 04:00-09/14 12:00 Special Time (ARASE) (see Note A) [HKW HOK ADW ADE KSR KOD CVW CVE FHW FHE BKS WAL PGR

3. Conjugate observations w/ ground-based instruments

• First direct evidence of pitch angle scattering by plasma waves in space plasma

The electron flux modulations inside the loss cone was directly observed for the first time, and one-to-one correlation with chorus waves were identified.

- The electron flux modulations inside the loss cone was directly observed for the first time, and one-to-one correlation with chorus waves were identified.
- Both electron flux and chorus waves have a good correlations with PsA observed at THEMIS GBO, which provides a definitive evidence for the precipitation of energetic electrons from the ground.

4. Status of Data Distribution (Science Center)

users

- All science data for satellite and ground data have been archived in the CDF format.
- Development of the data analysis software: ERG plug-ins for SPEDAS, which is de facto standard software for solar-terrestrial physics developed with IDL.

This software and standardized file format (CDF) are key to realizing the integrated data analysis using various kinds of data from observations and modeling.

ERG science data distribution

The following data sets are made publicly available after 1-year from data acquisition. Please contact us if you are interested in looking at the latest data.

- Arase/Particle data (LEP-e/i, MEP-e/i, HEP, and XEP)
- Arase E/B-field and plasma wave data
- Ground-based data

/data/ergsc/satellite/erg/hep/l2/omniflux/2018/07

Name	Last modified	Size	Description
Parent Directory		-	
erg hep 12 omniflux 20180701 v01 01.cdf	2018-07-04 13:01	793K	
erg hep 12 omniflux 20180702 v01 01.cdf	2018-07-05 13:02	892K	
erg hep 12 omniflux 20180703 v01 01.cdf	2018-07-06 13:02	867K	
erg hep 12 omniflux 20180704 v01 01.cdf	2018-07-07 13:01	449K	
erg hep 12 omniflux 20180707 v01 01.cdf	2018-07-10 13:02	810K	
erg hep 12 omniflux 20180708 v01 01.cdf	2018-07-11 13:02	894K	
erg hep 12 omniflux 20180709 v01 01.cdf	2018-07-12 13:02	838K	
erg hep 12 omniflux 20180710 v01 01.cdf	2018-07-13 13:02	774K	
erg hep 12 omniflux 20180711 v01 01.cdf	2018-07-15 13:02	823K	
erg hep 12 omniflux 20180712 v01 01.cdf	2018-07-15 13:02	809K	
erg hep 12 omniflux 20180713 v01 01.cdf	2018-07-16 13:01	801K	
erg hep 12 omniflux 20180714 v01 01.cdf	2018-07-17 13:02	804K	
erg hep 12 omniflux 20180715 v01 01.cdf	2018-07-18 13:02	797K	
erg hep 12 omniflux 20180716 v01 01.cdf	2018-07-19 13:02	723K	

/data/ergsc/satellite/erg/mgf/l2/8sec/2018/04

	Name	Last modified	Size	Description
۲	Parent Directory		-	
?	erg mgf 2 8sec 20180401 v01.01.cdf	2018-07-04 07:57	3.0M	
	erg mgf 2 8sec 20180402 v01.01.cdf	2018-07-04 09:00		
?	erg mgf 2 8sec 20180403 v01.01.cdf	2018-07-04 10:03		
?	erg_mgf 2_8sec_20180404_v01.01.cdf	2018-07-04 11:07		
?	erg_mgf 12 8sec 20180405 v01.01.cdf	2018-07-04 12:13		
7		2018-07-04 12:13		
5	erg_mgf 2 8sec 20180406 v01.01.cdf			
5	erg mgf 2 8sec 20180407 v01.01.cdf	2018-07-04 14:19		
	erg mgf 2 8sec 20180408 v01.01.cdf	2018-07-04 15:17		
	erg mgf 12 8sec 20180409 v01.01.cdf	2018-07-04 16:22	3.OM	
Ľ.	erg_mgf 2_8sec_20180410_v01.01.cdf	2018-07-04 17:19	3.1M	
	erg_mgf_12_8sec_20180411_v01.01.cdf	2018-07-04 18:26	3.OM	
2	erg mgf 12 8sec 20180412 v01.01.cdf	2018-07-04 19:29	3.1M	
2	erg mgf 12 8sec 20180413 v01.01.cdf	2018-07-04 19:55	1.3M	
	erg mgf 12 8sec 20180414 v01.01.cdf	2018-07-04 20:57	3.0M	
2	erg mgf 2 8sec 20180415 v01.01.cdf	2018-07-04 21:26	1.7N	
?	erg mgf 2 8sec 20180416 v01.01.cdf	2018-07-04 22:28	2.9M	
	erg mgf 2 8sec 20180417 v01.01.cdf	2018-07-04 23:13	2.6M	
	erg mgf 2 8sec 20180418 v01.01.cdf	2018-07-05 00:41		

https://ergsc.isee.nagoya-u.ac.jp/data/ergsc/satellite/erg/

4. Status of Data Distribution (Science Center)

Various types of quick-look plots are available online.

All instrument data and the related ground-based observation network data on the Quick-look plot website https://ergsc.isee.nagoya-u.ac.jp/cef/test/erg_test.cgi

Spacecraft Footprints and Ground-Based Instruments for 1989-2019

Conjunction Event Finder (CEF) provides "at-a-glance" plots for satellite locations and ionospheric footprints. http://ergsc.isee.nagoya-u.ac.jp/cef/orbit.cgi

- 1) Arase has successfully observed dynamical evolutions of Van Allen Belts and inner magnetosphere since March 2017. Conditions of satellite/science instruments are very good.
- Various observations on accelerations and loss of energetic electrons in geospace have been realized.
 We appreciate great collaborations with SuperDARN.
- 3) The extended mission is planned in FY 2019 FY 2021 (March, 2022). Your suggestions on collaborative observations are very welcome.