Deriving a map of FAC from SuperDARN and IMAGE/FUV

University of Electro-Communications, Tokyo

6 hrs interval on Jan 12, 2002

Yasunobu Ogawa

National Institute of Polar Research, Tokyo

Background + Motivation

Large-scale and averaged

Fujii et al., 1994

電離圏の電流密度

$$\mathbf{j} = \sigma_p \mathbf{E}_{\perp} - \sigma_h \frac{\mathbf{E} \times \mathbf{B}}{B} + \sigma_{\parallel} \mathbf{E}_{\parallel} \cdot \cdot \cdot (1)$$

(1)を高度積分すると
 $\mathbf{J} = \int \mathbf{j} dh = \Sigma_P \mathbf{E}_{\perp} - \Sigma_H \frac{\mathbf{E} \times \mathbf{B}}{B} + \Sigma_{\parallel} \mathbf{E}_{\parallel}$
垂直成分: \mathbf{J}_{\perp}

FAC の電流密度は電離圏電流の垂直成分の発散をとり $\mathbf{j}_{FAC} = \nabla \cdot \mathbf{J}_{\perp}$ $= \Sigma_P \nabla \cdot \mathbf{E} + \nabla \Sigma_P \cdot \mathbf{E} - (\mathbf{e}_B \times \nabla \Sigma_H) \cdot \mathbf{E}$ ジュール加熱率はオームの法則から $W = \mathbf{J} \cdot \mathbf{E}_{\perp} = \Sigma_P E_{\perp}^2$ $W = \mathbf{J} \cdot \mathbf{E}_{\perp} = \Sigma_P E_{\perp}^2$ $W = \mathbf{J} \cdot \mathbf{E}_{\perp} = \Sigma_P E_{\perp}^2$ \mathbf{E}_P $\mathbf{E}_P = -\nabla V$:極域ポテンシャル ---> SuperDARN

Conductivity - empirical

Pedersen

Hall

Validation of the conductivities

Conductivity + Electric field

電離圏の電流密度

$$\mathbf{j} = \sigma_p \mathbf{E}_{\perp} - \sigma_h \frac{\mathbf{E} \times \mathbf{B}}{B} + \sigma_{\parallel} \mathbf{E}_{\parallel} \cdot \cdot \cdot (1)$$

(1)を高度積分すると
 $\mathbf{J} = \int \mathbf{j} dh = \Sigma_P \mathbf{E}_{\perp} - \Sigma_H \frac{\mathbf{E} \times \mathbf{B}}{B} + \Sigma_{\parallel} \mathbf{E}_{\parallel}$
垂直成分: \mathbf{J}_{\perp}

Averaged FAC density [µA / m²] [lijima and Potemura, 1978]

	Afternoon to Midnight		Midnight to Forenoon	
	Region 1	Region 2	Region 1	Region 2
AL < 100	-1.1	0.6	1.1	-0.7
AL ≧100	-1.3	0.7	1.6	-1.1

Validation with CHAMP B-field

2002-01-12 17:31:28 UT

FAC density

Validation with CHAMP B-field

Larger B-field changes in the large FAC region

Summary

- Now we are trying to derive a map of FAC from SD + IMAGE
- The estimated intensities of FACs are consistent with the values of lijima and Potemura [1978]
- The estimated spatial distribution of FACs are consistent also with the simultaneous observations of the residual magnetic field by CHAMP
- We will soon start discussing the 2D pattern of FACs during substorm intervals by using these data products

