SI-associated transient ionospheric flow observed by SuperDARN

T. Hori (ERG Science Center, STEL), A. Shinbori (RISH), S. Fujita (Meteorological College), N. Nishitani (STEL)

Introduction: Sudden impulse (SI+, SI-)

Ground B. observation of SI+

Figure 2a. Sudden commencement (SC) observed at Kakioka (geomagnetic latitude = 26.6°N), Japan on March 24, [1991. [Araki+1997]

Rapid compression/expansion of the magnetosphere

> sudden rise/drop of the horizontal geomagnetic field on ground

Global MHD simulation of SI-Negative SI (SI-) caused by sudden expansion of the magnetosphere [Fujita+2012]

Introduction:

Ionospheric current vortices from geomagnetic field observation

$$dB_{ground} = D_L + D_P + D_{MS}$$
[Araki1994, modified]

12MLT [Araki and Nagano, 1989]

Introduction: SI-induced vortex seen by SuperDARN

Dusk sector flow during MI of a negative SI [Hori+2012]

[e.g., Lyatsky+1999; Thorolfsson+2001; Vontrat-Rbeberac+2002; Coco+2008; Huang+2008; Kane+2010; Liu+2011; Gillies+2012; Hori+2012; Liu+2013]

Previous works by SD

- Covered only limited portions of vortices on dayside or dusk.
- Examined the vortex polarity on the basis of event study.
- Gross average of flows around SIs.
- No study so far on the global structure of transient flow associated with SI wave forms.

All LOS-V data during positive SIs

2-D velocity statistically derived by the beamswinging technique

Line-of-sight Doppler velocities obtained in each lat-lon pixel are fitted to give a 2-D velocity vector.

fitted flow map for all SI+ events

White pins show each fitted 2D velocity vectors for each pixel. Pixel colors denote flow speeds with polarity of local time flow component.

Difference of flow vector between "before" and "at SI peak" (all SI+ events)

Findings so far based on SI statistics

- Polarity of flow vortices is basically consistent with the MI model [Araki1994, Araki&Nagano1988].
- Slower evolution of flow vortices for SI- than SI+.
- MI vortices emerge always at lower latitudes than PI ones.
- The higher latitude flows of vortices expand toward lower latitudes for SI- than SI+.
- IMF-By-induced flow asymmetry between SI+ and SI- [SGEPSS2014].
- \blacktriangleright Dependence of flow vortex magnitude on $\Delta P_{solarwind}$

dV_{fitted} map for SI+ and SI- peak

Dawn-dusk asymmetry and SI+—SIasymmetry

Transient flows expands more toward lower latitudes during SI-.

Answer so far:

- I ar:

 I ne magnetosphere is always more compressed by han usual (supported by re solar wind data)

 I mar:

 I > The magnetosphere is
- "Compressed magnetosphere" stores a free energy to expand outward.

dV_{fitted} map for SI+ and SI- peak

Summary and conclusion

SI-induced transient ionospheric flows observed by SuperDARN were statistically analyzed.

- The polarity of flow vortices is basically consistent with that inferred from geomagnetic observations [Araki, 1994].
- ► However, SI+ and SI- is not a mirror image of each other somehow in terms of convection/convection E.