Improving quality and reliability of Hokkaido radar data

Pasha Ponomarenko, Nozomu Nishitani, Alexey Oinats, Tomoaki Hori, and Taishi Tsuya STEL

Outline

- Motivation
- Elevation/altitude errors
 - Phase offset
 - Range offset
- Velocity errors
- Conclusions and future work

Motivation

- **Elevation** is a very important parameter providing information on :
 - Scatter/reflection altitude
 - HF propagation mode
 - ionospheric plasma density (Secant Law)
 - However, it is generally unused due to problems with calibration and apparently unphysical behaviour.
- Velocity is the main information parameter, but the velocity errors provided by FITACF either too low or too high.

Phase offset estimate

- This offset may arise from the difference between the interferometer and main antenna hardware (cabling, phasing matrices, etc).
- <u>Main idea:</u> ground scatter elevation has to decrease with increasing distance and to approach zero at large ranges.
- <u>The "correct" pattern</u> at large distances should contain near-zero values with isolated spots of the near-maximum elevation. The latter occur due to a combination of the phase statistical uncertainty and the 2π ambiguity arising from the multi-wavelength interferometer base.
- This calibration can be performed through gradually **adjusting the measured phase** by a constant shift at all ranges and re-calculating the elevation until it matches the expected pattern.

15 km: uncorrected

15 km: corrected phase

Range offset estimate

- This happens due to inaccurate estimate of the time delay caused by the receiver circuitry so that the sampling starts either earlier or later than required.
- Warning sign presence of the data gaps at fixed ranges which are separated by a constant number of gates. hok, beam 7, 19 June 2014

- These gaps arise from mis-labelling bad lags related to the transmitter pulse overlap.
- The Tx-affected lags have low power and, if not labelled, are picked up by an empiric "more_badlags" routine.
- The whole ACF is eliminated if there are more than 2 consecutive lags with "bad" (too low or too high) power.

ACF sampling and Tx overlap

• If one of the pulses is "blanked" (i.e. it has very low power) then the respective ACF lags should also have low power. $R(\tau) = \langle |x(t)| | x(t+\tau) | \exp(i\Delta\varphi(\tau)) \rangle$

Gap locations are pre-determined

Beam: 7 Freq: 9960 kHz FITACE Rand	20	olo	d) mpinc=8 lagf	r=4 n	rana=70 nblnk=2
Section 2007 Lock 1000 - Course 700	y 20	ノ =	,,	50	5
bise: 2097 Lagtr: 1200 us Smsep: 300	us			51	
law ACF				52	2,6,7,11
	Real	_		53	2,6,7,11
		Imag			
	□ badlags (RB)			55	
	Δmc	ore_badlags		56	
	_			57	
10 15				58	
1				59	
Power: 20 dB Width: -6 m/s				60	3,10,12,14,15
2.5×10 ⁵	ACF			61	3,10,12,14,15
2.0×10 ⁵	- Fit			62	
1.5×10 ⁵				63	
1.0×10 ⁵				64	
5.0×104				65	
				66	
				67	
18	43			68	0,9,12
19	44	2,6,7,11		69	0,9,12
20 3,9,11,13,17,18	45	2,6,7,11			
21 3,9,11,13,17,18	46				
22	47				
23	48				
24	49				

Missing Lags 8,16

How to estimate range offset

- It is very simple: by comparing expected and actual range/lag patterns of the Tx-overlap power gaps.
- The accuracy of this method is limited by the range resolution (actually, by the blanking pulse length and shape) so that the high-resolution mode allows for more precise estimates of the range offset.

Corrected phase

Corrected phase & range (3 gates)

Velocity errors

- With help of T. Hori, we fixed several problems describe in the tutorial at SD'13 (Moose Jaw, Canada):
 - Missing number of lags term (coding error)
 - Mis-interpreted "bad phase" flag (9999)
 - Corrected number of degrees of freedom (number of pulses rather than number of lags)

SuperDARN Workshop, 29 May - 3June

Summary and conclusions

- Physics-based procedures were applied for estimating phase and range offset in radar data.
- Velocity error calculation was modified to account for coding errors and imprecise assumptions.
- Applied corrections resulted in a realistic values and behaviour of the corrected parameters which improved reliability of the data and expanded SD diagnostic capabilities.

Future work

- Origins of nearrange echoes
- Propagation characteristics of HOK echoes
 - Monitoring the regular ionosphere parameters
 - Accurate location and magnitude of ionospheric perturbations (MSTID etc)

