Polarization electric field of MSTIDs estimated from simultaneous observations by using all-sky airglow imager and the SuperDARN Hokkaido HF radar over midlatitudes

*Takeshi MINOURA (1), Shin SUZUKI (1), Kazuo SHIOKAWA (1), Yuichi OTSUKA (1), Nozomu NISHITANI (1) and Keisuke HOSOKAWA (2)
(1) Solar-Terrestrial Environmental Laboratory, Nagoya University (2) Department of Communication Engineering and Informatics, University of Electro-Communications

Medium Scale Traveling Ionospheric Disturbances (MSTIDs)

OI 630-nm emission (height 200-300km)

22/05/1998 21:31 JST 40 130 inten

MSTID is a kind of ionospheric disturbances with a horizontal scale of 150-500 km. Almost all MSTIDs observed in nighttime in the northern hemisphere have wavefronts elongated in the northwestsoutheast direction, and propagate southwestward [Shiokawa et al., 2003a, Shiokawa et al., 2003b, Otsuka et al., 2004].

Medium Scale Traveling Ionospheric Disturbances (MSTIDs)

(left) Polarization electric field along with the wavefronts of MSTID was observed [Shiokawa et al., 2003b]. (right) EF layer coupling played an important role in the structure and generation of MSTID from simulation [Yokoyama et al., 2009].³

Previous study

Otsuka et al. [2009] suggested that the E-F coupling processes involved in the generation of the polarization electric field $\rm E_p$ in the F region.

Suzuki et al. [2009] reported that estimated polarization electric field was greater than the electric field perturbation in the F region as a case study.

Purpose of this study

We investigate statistical polarization electric fields observed by using the SuperDARN HF radar at Rikubetsu (43.5N, 143.6E), Japan, and an OI 630-nm airglow imager located at Paratunka (53.0N, 158.2E), Russia, within the radar field of view (Jan. 2010-Jun. 2014).

Observations

Observation period : Jan. 2010-May. 2014 (1000-1800UT) HF radar at Rikubetsu (43N, 143.6E) all-sky airglow imager at Paratunka (53N, 158.2E)

Analysis method

(left) An example of 630-nm all-sky airglow image. (right) The projection of the image onto the geographical coordinates. The red and green lines indicate beams of the HF radar in the field of view (16th Jan. 2010 1602UT).

Analysis method

Analysis method

These keograms show the intensity deviations from the 1 hour average (16th Jan. 2010). The red lines indicate the wavefronts of MSTIDs to estimate their period, horizontal phase velocity and propagation direction and calculate horizontal wavelength.

Result

We found 5 conjugate events of MSTIDs which show associations between the HF radar echoes and airglow intensity variations. The estimated parameters of MSTIDs are typical values at midlatitudes in the Northern Hemisphere.

		Horizontal	Horizontal	Airglow	
	Period	phase velocity	wavelength	intensity	Propagation
	[min]	[m/s]	[km]	variation [%]	direction [deg]
6 th Jan. 2010	46.3	48.2	134	5.9	S [200]
16 th Jan. 2010	48.5	72.5	211	7.7	SW [208]
18 th Feb. 2010	51.3	57.2	176	10.4	SW [221]
20 th Feb 2010	51.3	70.0	218	11.5	SW [231]
4 th Feb. 2011	52.5	64.7	204	11.3	SW [211]

Estimation of polarization electric field

Plasma drift velocity is observed by HF radar as lineof-sight Doppler velocity. $V=V_{los}/sin(\phi-\theta)$ (ϕ : propagation direction of

MSTID, θ: beam direction of HF radar)

Plasma moves along the wavefronts of MSTID by $E \times B$ drift. Plasma drift velocity V along the wavefronts is $V = (E_p \times B)/B^2$ $(E_p: polarization electric field, B:4.67 \times 10^4 nT (IGRF))$

Estimation of polarization electric field

16th Jan. 2010 (propagation direction of MSTIDs is 211 degree)

	Beam		
Beam	direction	Doppler	Plasma drift
number	[deg]	velocity [m/s]	velocity [m/s]
10	47	57.5	173.1
11	50.3	60	155.5
12	53.6	90	173.1
13	56.9	85	173.7
14	60.2	66.7	123.8

Average of plasma drift velocity V_{avg}=168.3 [m/s]

 $E_p = 168.3 \text{ (m/s)} \times 4.67 \times 10^4 \text{ (nT)} = 7.9 \text{ [mV/m]}$

In case of MSTID propagation is parallel with beam direction, we limited the angle more than 20 degree between the propagation direction ϕ and the beam direction θ . And we didn't use the data of beam 0 and 15 because the influence of the side lobe is considered to be larger than other beam.

Estimation of effective electric field

	Polarization electric	Airglow intensity	Effective electric field
	field [mV/m]	variation [%]	[mV/m]
6 th Jan. 2010	5.1	5.9	86
16 th Jan. 2010	7.9	7.7	101
18 th Feb. 2010	7.7	10.4	74
20 th Feb. 2010	7.6	11.5	66
4 th Feb. 2011	13.6	11.3	120

Effective electric field E_e (= $E_0 + U \times B$) in the F region is given by

 $|E_p| = E_e \frac{\Sigma_{p'}}{\Sigma_p} \cdot (\frac{\mathbf{k}}{|\mathbf{k}|})$ [Otsuka et al., 2009]

 $(\Sigma_p'/\Sigma_p$: Productivity perturbation which are equivalent to airglow intensity variations, **k**: wave vector)

Our results suggest importance of the E-F coupling via MSTID-related polarization electric field, because the above estimations require quite large effective electric field and seems to be improbable at midlatitudes considering the continuity of the electric current in the F region alone.

Polarization electric field and airglow intensity variation

There is a positive correlation between the estimated polarization electric field and the observed airglow intensity variations. Correlation coefficient is 0.59.

Conclusion

We investigate statistical polarization electric fields observed by using the SuperDARN HF radar at Rikubetsu, and an OI 630-nm airglow imager at Paratunka, within the radar field of view for Jan. 2010-Jun. 2014. We found 5 conjugate events of MSTIDs.

- The systematic polarity changes of Doppler velocities observed by the HF radar were consistent with airglow intensity variations.
- Observed negative (positive) Doppler velocities corresponded to strong (week) echo power and airglow intensity depression (enhancement).
- The estimated polarization electric field associated with MSTIDs are 5.1-13.6 mV/m and have a positive correlation with the airglow intensity variation.

Our results suggest importance of the E-F coupling via MSTID-related polarization electric field, because the above estimation requires quite large effective field and seems to be improbable at midlatitudes considering the continuity of the electric current in the F region alone.