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Ionospheric convection pattern

 The ionospheric flow pattern is one 
of fundamental property of the 
ionospheric science. 

 There exist several studies which 
deduced the velocity distribution 
pattern in the ionosphere. 

Ionospheric convection pattern deduced by the 
spherical harmonics method 
(http://vt.superdarn.org/ Virginia Tech Website) 



Existing methods

 Spherical harmonic fitting 
 Assuming that the divergence-free condition, 

the vector field can be represented by a scalar 
stream function. The stream function is 
expanded with spherical harmonics funcitons. 

 Sensitive to local distrubances and noises

 Matrix-valued kernel (Narcowich et al., 2007; 
Fuselier and Wright, 2009)
 Localized basis function

 Computationally demanding  

 Designed for interpolating vector-valued data

 Spherical elementary current system (Amm, 
1997)
 Localized basis function

 Diverge at the singular point of a basis function

Ionospheric convection pattern deduced by the 
spherical harmonics method 
(http://vt.superdarn.org/ Virginia Tech Website) 



Spherical elementary current system (SECS)

 The divergence-free SECS basis function is defined so that the curl is constant 
except at the pole, and the curl-free SECS basis function is defined so that the 
divergence is constant except at the pole. 

 Nodes of the SECS basis functions can be placed arbitrarily. This can be 
regarded as one of radial basis function (RBF) networks. 

 They diverge to infinity at the pole. 

An example of node distribution



Generalization of SECS

 The ionospheric plasma drift velocity distribution can be assumed to 
be divergence-free (no source, no sink). 

 The divergence-free vector field can be represented by a stream 
function Ψ as follows:

 We expand the stream function Ψ by using localized basis 
functions:

 Thus, 
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Generalization of SECS

 Defining vector-valued localized basis function:

we obtain

 If                                      where 

This is the original divergence-free SECS basis function. 
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Generalization of SECS

 We represent the divergence-free velocity field by

 We choose the spherical Gaussian function for ψ :

and obtain the following divergence-free basis function
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Kalman filter

 We assume the temporal evolution of the weights w

 The residual component can then be estimated with the 
following Kalman filter algorithm:
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Estimation

 The covariance matrices Q is given so as to satisfy

 And R is assumed to be diagonal:                  
 The parameters       and      are determined by 

maximizing the marginal likelihood:
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Experiment

 We conducted experiments with synthetic radar data 
generated from a certain velocity distribution model. 

 The observation sites and observed echoes were 
assumed to be the same as observed on March 17, 
2015. 

 The nodes of the basis functions were placed at every 5 
and 2 degrees in longitude and in latitude, respectively. 



Reconstruction with proposed functions

0800 UT, Mar. 17, 2015

Estimated velocity distribution Original velocity distribution



Reconstruction with SECS functions

0800 UT, Mar. 17, 2015

Estimated velocity distribution Original velocity distribution



Stream function with proposed 

0800 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with proposed 

0810 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with proposed 

0820 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with proposed 

0830 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with proposed 

0840 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with proposed 

0850 UT, Mar. 17, 2015

The estimate with proposed basis 
funcitons.  



Stream function with SECS

0800 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Stream function with SECS

0810 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Stream function with SECS

0820 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Stream function with SECS

0830 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Stream function with SECS

0840 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Stream function with SECS

0850 UT, Mar. 17, 2015

The estimate with SECS basis 
funcitons.  



Use of empirical model

 An empirical model is referred to in estimating the 
velocity distribution.  

 We assume the weight w can be decomposed into the 
model-based value ζ and the residual β : 

 The model-based value is determined so as to fit an 
empirical model by Weimber 2001. 

 The residual β is estimated with the Kalman filter. 

.= +w ζ β



Kalman filter

 We assume the temporal evolution of the resudial 
component obeys

 The residual component can then be estimated with the 
following Kalman filter algorithm:
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17 March 2015



Result

0800 UT, Mar. 17, 2015

The estimate with actual data



Result

0810 UT, Mar. 17, 2015

The estimate with actual data



Result

0820 UT, Mar. 17, 2015

The estimate with actual data



Result

0830 UT, Mar. 17, 2015

The estimate with actual data



Result

0840 UT, Mar. 17, 2015

The estimate with actual data



Result

0850 UT, Mar. 17, 2015

The estimate with actual data



27 March 2017



Result

1000 UT, Mar. 27, 2017

The estimate with actual data



Result

1010 UT, Mar. 27, 2017

The estimate with actual data



Result

1020 UT, Mar. 27, 2017

The estimate with actual data



Result

1030 UT, Mar. 27, 2017

The estimate with actual data



Result

1040 UT, Mar. 27, 2017

The estimate with actual data



Result

1050 UT, Mar. 27, 2017

The estimate with actual data



Summary

 We have proposed a framework for obtaining global flow 
vector distribution in the ionosphere. 

 In our framework, the vector field is represented by 
weighted sum of localized basis functions derived from a 
spherical Gaussian function. The basis functions consist 
of two types of functions: curl-free functions and 
divergence-free functions. 

 Our framework also allows us to combine the 
SuperDARN data with existing statistical pattern of the 
velocity distribution. 
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