“Caterpillar-like ULF waves” detected by SuperDARN
during SuperDARN-Arase conjunctions in Fall 2022
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Super Dual Auroral Radar Network (SuperDARN)

From Vt_superdarn_org website Standard temporal I’eSO|uti0n: 1'2 m|n
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Number of operating HF radars: 38 (24 in the northern and 14 in the southern hemi-
spheres) as of Nov 01, 2020, operated under the cooperation of about 10 countries

The radars use basically the same hardware architecture, same operation software,
same schedule, same data format and same data analysis software, provide important
information for the space weather / geospace dynamics studies.




Conjunctions of SD with Arase in autumn 2022

« Arase covered the auroral/subauroral region on the dusk side which is
a hot spot of irregularities (= source of radar echoes)

« Submitted special time requests for running November 2022
interleaved_normalscan in support of el DT L oy

Arase for 4 months from Sep to Dec, 2022 ; o ]
4= o e L -
« Requests were approved for ~5 days/month ‘ R

« May be able to track
variations faster
than the normal
beam steering
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Possible targets of special time observations

« Subauroral Polarization Stream (SAPS) — Hori et al. at poster on Sep 24
~= Subauroral Ion Drift (SAID)

« ULF waves at the auroral / subauroral latitudes
in the dusk to pre-midnight sector |

o N e L -
< o ” -
m 100 ' . 35 IFL‘ us -n
50 € 3 _
\ 0 t @ - J ol E
7)) 0% & 1Y Q)
(a B —200 2 j <
< :?ggo * (D
n ¥ 0

-75° -60° -45° i L
Clausen et al. (2012) Yeoman et al. (2012)



Majority of previous SuperDARN papers studied ULF
waves during disturbed periods (Walker et al., 1992)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. A8, PAGES 12,187-12,202, AUGUST 1, 1992

Spatial and Temporal Behavior of ULF Pulsations Observed
by the Goose Bay HF Radar

A.D. M. WaLKeR!, J. M. RuoHONIEMI, K. B. BAKER, AND R. A. GREENWALD

The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland

J. C. SamsoN

Canadian Network for Space Research, Department of Physics, University of Alberta, Edmonton, Alberta, Canada

A detailed analysis of HF radar data of a ULF pulsation event in the postmidnight sector on January
11, 1989, has been carried out using techniques which allow the instantaneous amplitude and phase to be
determined as functions of geomagnetic latitude, longitude, and time. Field line resonances with several dif-
ferent frequencies occur simultaneously at different latitudes. These can be associated with cavity mode fre-
quencies of 1.3 mHz, 1.9 mHz, 2.7 mHz, and 3.3 mHz. In addition there is a resonance at 0.8 mHz which
does not fit well with a cavity picture. These frequencies are constant to better than 10% over a local time
period of nearly 4 hours. They show a packet structure as would be expected if they were triggered by a
succession of impulses. The phase changes arbitrarily from packet to packet, but the frequency remains
constant. The position of the maximum of the resonance as a function of time changes systematically. It is
shown that this arises as the length of the field line changes with time; the resonance remains on the field
line having appropriate length and Alfvén speed. The field-aligned cumrents driven by the resonances can
be as large as 5 pA m~2 at ionospheric heights. The data support a picture of modes driven by solar wind

impulses. It may be more appropriate to speak of a waveguide rather than a cavity with the phase velocity P ro pOSEd wave g u |d em Od e

of the mode matching the velocity of the impulse along the magnetopause. A difficulty associated with this
picture is that the great reproducibility of the frequenties is not consistent with the variability of the mag- 1 1

netopause, which forms one of the boundaries of the assumed resonator. It is, however, difficult to con- d IStu rba n Ce trlggered by SW D p
ceive of other resonators, for example in the magnetotail, which would provide a better explanation of the

observations. C h an ge S

Fig. 1. Schematic diagram of the equatorial plane in the waveguide
model.




Majority of previous SuperDARN papers studied ULF
waves during disturbed periods (Samson et al., 1992)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.. 97, NO. A6, PAGES 8495-8518, JUNE 1, 1992

Substorm Intensifications and Field Line Resonances
in the Nightside Magnetosphere

J.C. SAMSON
Canadian Network for Space Research, Department of Physics, University of Alberta, Edmonton

D.D. WALLIS, T.J. HUGHES, F. CREUTZBERG
Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa

J.M. RUCHONIEMI, AND R.A. GREENWALD
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland

Magnetometer and HF radar data often indicate the p of mag ydrodynamic, field line

in the nightsid here. These have fi ies of about 1.3, 1.9, 2.6, and 3.4

mHz and are due to cavity modes or waveguide modes which form between the magnetopause and turning
points on dipolelike magnetic shells. Energy from these cavity modes tunnels to the field line resonances
which are seen in the F region by the HF radar and on the ground by the magnetometers. The presence of

these field line gives us an lent di ic tool for determining the position of the mechanism
leading to the energetic el and field-aligned currents iated with substorm intensifications and
auroral brightening. Using data from the Canadian CANOPUS array of meridian i

photometers, riometers, and bistatic auroral radars and data from the Johns Hopkins University/Applied
Physics Laboratory HF radar at Goose Bay in Canada, we have identified a number of intervals in which
substorm intensifications occurred during times when field line resonances existed in the region of the magne-

here where the i ificati d. In the events that we have analyzed in detail, the ionospheric
signatures of the substorm intensification began equatorward (earthward) of existing field line resonances.
These observations give very strong evidence indicating that at least one component of the substorm
mechanism must be active very close to the Earth, probably on dipolelike field lines in regions with trapped
and quasi-trapped energetic particles. Furthermore, the auroral intensifications started near the position of
one of the equatorward resonances, indicating that the field line resonances may play a role in triggering or
producing the substorm intensifications. One possible scenario is mode conversion to kinetic Alfvén waves in
the resonance.
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Fig. 31. An approximate schematic of the pcsition of the onset of the
substorm in the ionosphere. Convection cells are depicted by the thin
lines with arrows giving the direction of flow.

Proposed that FLR leads to
substorm intensifications
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Example of Nov 23, 2022

* IMF By/Bz, Plot: 2022 Nov 22
12 UT —Nov 23 12 UT

* Very quiet period
—IMF Bz: ¥ +2 -+3 nT
—IMG By: -3 --4 nT
—SW velocity: 300 - 350 km/s
—SW density: 7-8 /cc
—SYM-H: ~0 nT

4 hours



Caterpillar-like ULF signatures on Nov 23, 2022

Kp O super quiet interval

November 23, 2022

Very hungry caterpillar by Eric Carle
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FLR signhature?

PGR, MLAT = 69, 01:10-01:56 UT
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B & E-field from Arase 2022-11-22/23:59:59-02:16:23
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‘L-o-s velocities from SD~
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Magnetic latitude of auroral oval

Northern Hemisphere 23 Nov 01:56 UT
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Propagation characteristics in keo/ewograms

« Northward / eastward phase propagation is obvious in the data from PGR

(anti-sunward) _
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Corresponding variation in GPS-TEC

The detrended TEC
showed a periodic
oscillation with the
same period of
jonospheric plasma
flow perturbations

The amplitude of
the TEC oscillation
was sporadically
magnified during
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Northward
velocity

76

[m/s]

= i d . I ? g a
. e SR T =
= [ Sy ot SR e = =
= L~ by e S
== - s =3
= PRN14 - e =
= SD o . L-o-s vel along IPP —
- \ _J»/"J\v“\\r'f % HIII I"\\ [ "\‘ N |r'\ ,'I '|| I."ﬁl". IPII R ,"I\\'. I,f\.lI . Ilﬂll A X —]
=) NN~ VAN VI A A MY UYANA M [VAAD 3
- VooVl Vi VoMLV =
= / V v [ ——
C | _
= GPS-TEC IPP @ 300 km |-'ﬁ|| | Ir"|I ; =
= II.-'III ,'A'u A -’ll |1 I|I |'| . . E
= S WA AL SV AN A
E U VvV =
= " "1 FSI GNSS station £
2925 293 4 2945 295.7 2971 298.9 3013
64.3 56.0 66.8 67.4 57.8 68.1 58.3
0030 0100 0130 0200 0230 0300 0330

|
B

-20

Northward



Summary and our plan this autumn/winter

. Captured “caterpillar-like” ULF waves during the SD-Arase campaign
in autumn 2022 over the north American sector

. Latitudinal variation of the wave amplitude implies the existence of FLR

. Anti-sunward phase propagation seen in the 2D velocities suggests
possible contribution of K-H instability to generate the ULF waves

»  Arase detected the corresponding ULF signatures having toroidal/
poloidal components (without compressional components). Toroidal
waves are well correlated with the B-field variations on the ground

«  Similar wavy feature was seen in GPS-TEC, indicating that the
caterpillar-like ULF even modulated the ionospheric electron density

. ULF observations with SD allow us to visualize the 2D evolution of
MHD waves from multiple sources in the M’sphere

. Analyses of ULF waves during “super quiet intervals” with in-situ
satellite and ground-based observations would shed light on further
understanding of the generation/propagation process of ULF waves

. Continue this effort in Oct, Nov, Dec, 2023




More caterpillars ...

Lots of other caterpillars indeed...
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